

MALWARE EVENT REPORT

MudOrange-3PC
Vulnerable CMS and digital advertising enable proliferation of
malvertising across compromised brand websites

Page 1 of 21

 CONFIDENTIAL AND PROPRIETARY February 2023

Introduction
The Media Trust has been detecting and tracking a widespread malicious threat affecting both
advertisers and publishers whose content can range between low and high quality. Originally
using adult sites as a playground, these malicious actors have now cast a wider net, reaping
havoc across the internet by showing fake software updates and advertising compromised
software such as malicious browser extensions to everyone they can. This threat mainly lives
in low quality or malicious Blogger pages behind bogus VPN and click-bait creatives, affecting
those who wander in. However, this threat is making its way into legitimate but vulnerable
websites, most of which have been WordPress sites. Although it tries to avoid automated
browsers and scanners, it does not discriminate against its users based on device or operating
system. We have seen this threat affect Windows, Android, Mac, iPhone, Chrome, Firefox, etc.

High-Level Analysis
A vulnerable website will be injected with a malicious HTML script tag containing an object
named atOptions and code that will load the malicious invoke.js file (Figure 1). atOptions
serves as the configuration for invoke.js, dictating its behavior and the type of malicious
content that will be shown to the unsuspecting user. This configuration can have a number of
keys: key, format, height, width, and params. Other versions of this threat may contain the
async key. A breakdown of the atOptions configuration can be seen in the table below:

Figure 1: Malicious HTML div inside compromised web page

Page 2 of 21

 CONFIDENTIAL AND PROPRIETARY February 2023

NAME DESCRIPTION

key Unique identifier of the malicious code

format Injection style of the malicious delivery [‘js’ or ‘iframe’]

height Height of the iframe to be injected into the website

width Width of the iframe to be injected into the website

params Extra parameters given to invoke.js

async Key that determines whether another iframe of script gets
injected into an HTML element

When invoke.js executes, it makes sure this atOptions configuration exists before resuming.
The malware begins by constructing two URLs, let’s say URL 1 and URL 2. The structure of
these URLs are as follows:

https[:]//[domain]/watch .[random number].js?key=[config key]&kw=[page title as
array]&refer=[referrer url]&tz=[timezone offset]&dev=[device is being
emulated]&res=[result from fingerprinting checks]&uuid=[unique identifier]

An example of a Malicious URL 1:

https[:]//moodokay[.]com/watch.1366321908825.js?key=57b666589841472f1ccb
1dfa382f656e&kw=[REDACTED]&refer=[REDACTED]&tz=0&dev=e&res=12.310
3&uuid=cf6cd552-91a5-4fc0-9c56-5a46861fc4b1:2:1

Notice the &dev= and &res= URL parameters. The former tells the server if the user’s device
is being emulated and the latter is the result of fingerprinting checks in the form of a number.
The fingerprinting functions basically check if common browser functions exist and the device
is not lying about properties such as operating system name, language, and browser.

URL 2 is the exact same as URL 1 except for the .js extension after the file name. URL 1 is
requested whose response text will contain important information regarding next steps.
However, if for any reason the request for URL 1 fails, a request for URL 2 is made, whose
response is the same as URL 1 but in HTML form, instead of JavaScript.

The response from URL 1 contains key pieces of information such as optional iframe attributes
which determine the size of the malicious iframe to be injected into the webpage. Then is used
for when the format value in the configuration is “iframe”. The other content includes code for

Page 3 of 21

 CONFIDENTIAL AND PROPRIETARY February 2023

an HTML script tag and additional code that will be executed. The response from URL 1 can
look like Figure 2 below.

Figure 2: Response from Malicious URL 1

If the format key in the configuration has a value of “js” or the response text contains the
strings '<!--video_banner=1;-->' or 'var dfc221c35e', the entire response from URL 1 will be
injected into a malicious div on the web page as JavaScript code. This div will have an ID of
atContainer-[key value], for example atContainer-57b666589841472f1ccb1dfa382f656e. The
code in this div will then be executed.

If the format key in the configuration does not have a value of “js” or the response text does not
contain the strings '<!--video_banner=1;-->' or 'var dfc221c35e', then an iframe will be created
which will contain three elements: one script tag which contains code that creates a global
variable named atAsyncContainers, let’s call this Script 3. The other element injected into the
iframe is a div with an ID of atContainer-[key value]. Inside this div will be the code inside a
script tag from the response. This only happens when the atOptions configuration contains the
key async. The third element in this iframe is another script tag, Script 2, whose code will be
the response from Malicious URL 1. With the help of Script 3, Script 2 will inject code inside
the aforementioned div. A visualization of this iframe is in Figure 3 below.

Page 4 of 21

 CONFIDENTIAL AND PROPRIETARY February 2023

Figure 3: iframe containing three malicious elements

Using Figure 3 as a reference, when the iframe is injected into the web page, Script 2 will use
the global variables in Script 3 to access the div with ID of atContainer-[key value]. (Replace
[key value] with the value of key in the configuration). Script 2 will inject code into this div and
execute it. This convoluted sequence of events is just a way for the malicious actors to inject
any code they want on websites they already compromised.

Depending on the contents of the malicious URLs, two things can happen; the user is
redirected to malicious content or a malicious popup is shown on the compromised site via a
bogus creative; this creative typically leads to malicious content in the form of fake software
updates (See below).

Edge: Redirect to fake content Adobe: Fake popup leading to fake software update

Page 5 of 21

 CONFIDENTIAL AND PROPRIETARY February 2023

In the latter option, a bogus creative is delivered which immediately triggers a popup. Since
this popup is on the compromised website itself, it is more believable (See below).

High-Level Flowchart

Compromised landing page

Page 6 of 21

 CONFIDENTIAL AND PROPRIETARY February 2023

Low-Level Analysis
A compromised web page will contain an injected HTML element which holds configuration
values used by the malicious code.

Figure 4: Malicious HTML div inside compromised web page

Seen in Figure 4, the configuration’s key-value pair is inside a JavaScript object named
atOptions. There are five keys: key, format, height, width, and params. The value of these keys
will be used by the malicious invoke.js script that will be executed. This script is injected into
the web page by this same HTML div.

Page 7 of 21

 CONFIDENTIAL AND PROPRIETARY February 2023

Figure 5: Obfuscated invoke.js script

Exemplified by the code snippet in Figure 5, the code behind invoke.js is heavily obfuscated,
as is the case with most JavaScript malware. In order to make code analysis easier to digest,
the entire script was deobfuscated and variables were renamed to make their intention more
clear. The rest of this analysis will use this reformatted version.

Setting Up the Checks
The first thing this malware does is set up a way to fingerprint the device, which we will call the
Check Handler. This method takes the form of an object that contains four different methods.

Page 8 of 21

 CONFIDENTIAL AND PROPRIETARY February 2023

Figure 6: JavaScript object for device fingerprinting

Figure 6 shows these four functions: isEmulate, addTest, runTests, and getResults. Looking at
the addTest function, we can see that it is used to add fingerprinting operations into a
JavaScript array named tests.

Figure 7: addTest function

The addTest function takes four arguments, the name of the check, two variables named
truePoints, and falsePoints, and the actual function to be executed, performing the check.
Arguments truePoints and falsePoints are random values provided that are used to count the
results from each check, as each function returns either true or false.

Page 9 of 21

 CONFIDENTIAL AND PROPRIETARY February 2023

Figure 8: Fingerprinting functions

This malware has 13 checks, whose names can be seen in Figure 8 above. Note that the
names of these functions were not changed and what you see is what the malicious actors

The Check Handler has a function named runTests, which, as the name implies, runs these
checks. The getResults function takes the results from these functions and returns a string
containing a decimal number.

Page 10 of 21

 CONFIDENTIAL AND PROPRIETARY February 2023

TEST NAME CHECK

hasFileInputMultiple User is allowed to enter more than one value in an html input
field

hasCustomProtocolHandler Webpage has the ability to open or handle URL protocols

hasCrypto Crypto object is present in the window (used for cryptographic
functions)

hasNotification Webpage can show notifications

hasSharedWorkers The SharedWorker function is available (used to execute
scripts at a specified URL)

hasInputCapture The capture attribute is available on html input elements

hasTouchEvents User’s device has touch capability

hasWindowOrientationProperty The device orientation property exists (returns orientation of
the device; mobile devices)

hasDevToolsOpen The browser developer tools is open (anti-analysis check)

hasLiedResolution Device is lying about the available resolution

hasLiedOs Device is lying about its Operating System

hasLiedBrowser Device is lying about the browser it is using

hasLiedLanguage Device is lying about the language it is using

Page 11 of 21

 CONFIDENTIAL AND PROPRIETARY February 2023

Figure 9: Variable returned by getResults

Page 12 of 21

 CONFIDENTIAL AND PROPRIETARY February 2023

As each check is executed, a bitwise operation is performed and stored into a variable, in this
case it is _0xf3ec68. As Figure 9 above shows, this variable is concatenated with the string
“12.”. An example of what the final result would look like is 12.3103, but this number ultimately
depends on the results of the fingerprinting checks.

Lastly, the Check Handler has a function named isEmulate which tells the script if the device it
is running on is being emulated, i.e., not an actual user but a device used for automation. The
presence of the Check Handler is just a clever way to wrap and organize the fingerprinting
checks into one entity, making it easier to use when constructing malicious URLs. The check
handler is assigned to a global variable name window.LieDetector, again, a name given by the
malicious actors.

Delivery of Malicious Content
Now that the preliminary steps are complete, the invoke.js script begins the delivery of
malicious content. First, it takes the title of the webpage and converts it into a comma
separated array.

For example, say the title of the webpage is 'Rick Astley - Never Gonna Give You Up (Official
Music Video) - YouTube'. The result will be,

['rick', 'astley', '-', 'never', 'gonna', 'give', 'you', 'up', '(official',
'music', 'video)', '-', 'youtube']

This array is passed to a function which we’ll call main, as it is just a wrapper function for the
bulk of the malicious code. As we will see, this array is just passed as a value for a URL
parameter.

The first thing the function main does is check for the presence of the atOptions window object.

Figure 10: Checks for presence of atOptions configuration

Page 13 of 21

 CONFIDENTIAL AND PROPRIETARY February 2023

Remember that atOptions is the injected HTML element which holds configuration values used
by the malicious code. See Figure 11 below.

Figure 11: Malicious HTML div inside compromised web page

Once the presence of this configuration is verified, the function responsible for delivering
malicious content is executed, which we call start_of_malicious_delivery. In this function,
additional checks are made to ensure that the keys key, format, height, and width exists in
atOptions configuration above.

Figure 12: Verifying atOptions keys exist, terminating otherwise

Page 14 of 21

 CONFIDENTIAL AND PROPRIETARY February 2023

If the keys do not exist, the script logs the message “Invalid invocation parameters passed” in
the browser console and the script stops executing. These checks can be seen in Figure 12
above.

Two malicious URLs are beginning to form using a number of URL parameters and their
values. Malicious URL 1 has the following structure:

NAME VALUE

Protocol https

Hostname Malicious domain

Path name /watch.[random number].js

Arguments See below

URL PARAMETERS

key Value of key key in atOptions

kw Title of webpage as an array

refer Referrer URL

custom Value of params key in atOptions

tz Timezone offset

dev 'e if the device is being emulated, f otherwise. In other words, result from
window.LieDetector.runTests().isEmulate()

res Result from check handler: window.LieDetector.getResults()

uuid Universally unique identifier [cookie value]

An example of a Malicious URL 1:

https[:]//moodokay[.]com/watch.1366321908825.js?key=57b666589841472f1ccb1dfa382f6
56e&kw=[REDACTED]&refer=[REDACTED]&tz=0&dev=e&res=12.3103&uuid=cf6cd552-91a5-
4fc0-9c56-5a46861fc4b1:2:1

Malicious URL 2 has the exact same structure as Malicious URL 1 except it doesn’t have the
.js extension after the random number.

Page 15 of 21

 CONFIDENTIAL AND PROPRIETARY February 2023

Notice the uuid URL parameter above, this value comes from the creation of a browser cookie.
The script checks to see if the cookie name dom3ic8zudi28v8lr6fgphwffqoz0j6c= already exists
in the web page. If so, it simply sets the uuid value to be the value of this cookie, for example,
cf6cd552-91a5-4fc0-9c56-5a46861fc4b1:2:1. If this cookie does not exist, it creates a cookie
whose value comes from https[:]//simplewebanalysis[.]com/stats. Figure 13 shows the
response from this domain.

Figure 13: simplewebanalysis[.]com giving cookie value

After creating the browser cookie, the value is given to the uuid URL parameter. All of the
steps above can be seen in Figure 14 below.

Figure 14: Function that checks or creates browser cookie

Page 16 of 21

 CONFIDENTIAL AND PROPRIETARY February 2023

Now that the uuid is set, an HTTP request is made for Malicious URL 1.

Figure 15: Response from Malicious URL 1

If the HTTP request is successful, the script takes the response text and uses it to extract key
information and decide what happens next. There are two important conditions that are
checked:

Condition 1:
If the format key in the configuration has a value of “js” or the response text contains the
strings '<!--video_banner=1;-->' or 'var dfc221c35e', the script takes the entire response from
Malicious URL 1, creates a new script tag, and makes the code of that script tag to be the
response text. This script will be then be injected into an HTML div whose ID is atContainer-
[adOptions.key]ˆ. If the currently executing script, invoke.js, is running inside an iframe, this
new div will be injected into this iframe. However, if invoke.js is running inside a regular
webpage, then the div will be injected into the webpage. At the end of this process, the code
from Malicious URL 1 will execute.

Page 17 of 21

 CONFIDENTIAL AND PROPRIETARY February 2023

Condition 2:
If Condition 1 is false, then the following things happen:

If there is a script tag inside the response from Malicious URL 1, like there is in Figure 12
above (inside the template variable), then the content of this tag is inserted into a new script
tag, let’s call this Script 1.

If the atOptions configuration contains the key async and there was a script tag in the
response, then Script 1 is inserted into an HTML element whose ID is the value of the
atOptions’ container key. Whether or not a script tag was present in the response, an iframe is
inserted into this element.

If the async key does not exist, then Script 1 and the iframe are both inserted into the body of
the web page. But if the currently executing script, invoke.js, is running inside an iframe, then
both Script 1 and the new iframe are inserted into this iframe.

Another script, let’s say Script 2, will contain the entire response text of Malicious URL 1. Script
2 will also be inserted into the new iframe.

Yet another script, Script 3, will be inserted into the new iframe and will contain the following
code:

window["atAsyncContainers"] = {};
window["atAsyncContainers"][atOptions.key] = "atContainer-" + atOptions.key;

Script 2 relies on Script 3 as it checks for the atAsyncContainers key above. And the final thing
to be inserted into an iframe is an HTML div whose ID is atContainer-[adOptions.key] as well.
Script 2 will inject and execute code inside this div.

Depending on the atOptions configuration injected into the compromised web page, there are
two possible outcomes. A malicious popup within the compromised web page is shown. This
popup stems from a bogus creative delivered by Malicious URL 1.

Examples of fake creatives and popups:

Page 18 of 21

 CONFIDENTIAL AND PROPRIETARY February 2023

The other option is a malicious redirect. If the malicious code decides to redirect instead, the
redirect URL will be inside the response of Malicious URL 1. For example

https[:]//www.spikereekvelocity[.]com/dyfc1k09?shu=9303e68f14fdc218612a0acd694772
05812b36ebf67f92337d9222342019895bc118e5750885db1f71b3c9d7969e25e6328d7e6124f02ef
4489dd8172ed63a0dfd3c904d1b0073ed32b0b159b6ae8a29ffa30b1a71231f6505fdd586a4fa03&p
st=1673362273&rmtc=t&uuid=cf6cd552-91a5-4fc0-9c56-
5a46861fc4b1%3A2%3A1&pii=&in=false&key=863705bcbb4b6a554ddb359665395a6f&refer=[RE
DACTED]

This malicious URL redirects to other forms of malicious content such as potentially unwanted
programs like browser extensions and fake software updates. For example,

If for any reason the HTTP request for Malicious URL 1 fails, Malicious URL 2 is instead
requested. The response from this URL is the same as Malicious URL 1 but in HTML form
rather than JavaScript. The HTML response is injected into the web page via an iframe. This

Page 19 of 21

 CONFIDENTIAL AND PROPRIETARY February 2023

acts as a fail safe in case Malicious URL 1 can not be delivered and guarantees the popups
are served

Low-Level Flowchart

Page 20 of 21

 CONFIDENTIAL AND PROPRIETARY February 2023

Indicators of Compromise
Many of these IOCs share the same IP Address space 173.233.137.36. In general this
malware seems to have a large number of initial payload domains used by the invoke.js script.
These then call secondary payloads, which hen deliver the malicious content shown to the
user.

0kal38g35ctc[.]top

inklinkor[.]com

highperformancedisplayformat[.]com

prtrackings[.]com

aliastryalways[.]com

creative-bars1[.]com

quickieboilingplayground[.]com

holdsoutset[.]com

costhandbookfolder[.]com

effacedefend[.]com

banquetunarmedgrater[.]com

repentbits[.]com

bedrapiona[.]com

entitledbalcony[.]com

tractorfoolproofstandard[.]com

revelationschemes[.]com

bu3le2lp4t45e6i[.]com

foundfroshelves[.]com

organizationwoundedvast[.]com

reypelis[.]tv

friendshipmale[.]com

highperformancedisplaycontent[.]com

simplewebanalysis[.]com

chefishoani[.]com

hicanymearry[.]com

captivatepestilentstormy[.]com

snoopundesirable[.]com

cloudimagesb[.]com

peuraveric[.]com

profitabledisplayformat[.]com

spikereekvelocity[.]com

stuffedstudy[.]com

tartator[.]com

suffixreleasedvenison[.]com

temperrunnersdale[.]com

jewelbeeperinflection[.]com

unseenreport[.]com

temporarilyruinconsistent[.]com

yonhelioliskor[.]com

solemnvine[.]com

progamerage[.]com

Page 1 of 21

 CONFIDENTIAL AND PROPRIETARY February 2023

Actions to Take
If you think that your website has been infected by the Invoke JS, then act quickly to eradicate
this malware and fortify your website. The first step should be to change the CMS
administrator credentials and audit any user accounts with admin rights. This infection may
have been caused by outdated CMS core files—e and specially by outdated third party themes
and plugins—, so it is essential to update them. Additionally, remove files or plugins that you
do not recognise or no longer use. Servers should also be using the latest version in order to
avoid vulnerabilities. Web application firewalls should also be used to prevent cross-site-
scripting, SQL injections, and similar attacks.

Despite taking the necessary precautions to harden a website and employ effective scanning
practices, there is still no guarantee that intruders will not be able to breach the defense. In
some instances, malicious entities can remain hidden on a system for an extended period of
time before being detected. To make sure breaches are spotted as soon as they occur,
services like The Media Trust offer continuous monitoring with the ability to detect malicious
third party applications. Using TMT live security for scanning landing pages for campaigns can
identify malicious scripts like the Invoke JS malware before allowing them to run. Advanced
scanning techniques should be used to identify any threatened actors that use sophisticated
evasion tactics, as this will help safeguard the users and stop the spread of the compromise.

Impact
The primary victims of these attacks are the site owners and their users. Users run the risk of
falling for the scams prompting them to update software and inadvertently download malware
to their device that could expose personal data and compromise their device. Aside from user
consequence, site operators and the publishers unknowingly serving malicious pop ups may
result in users losing confidence in their site or storefront and damage to their reputation.

	DESCRIPTION
	NAME
	Unique identifier of the malicious code
	key
	Injection style of the malicious delivery [‘js’ or ‘iframe’]
	format
	Height of the iframe to be injected into the website
	height
	Width of the iframe to be injected into the website
	width
	Extra parameters given to invoke.js
	params
	Key that determines whether another iframe of script gets injected into an HTML element
	async
	CHECK
	TEST NAME
	User is allowed to enter more than one value in an html input field
	hasFileInputMultiple
	Webpage has the ability to open or handle URL protocols
	hasCustomProtocolHandler
	Crypto object is present in the window (used for cryptographic functions)
	hasCrypto
	Webpage can show notifications
	hasNotification
	The SharedWorker function is available (used to execute scripts at a specified URL)
	hasSharedWorkers
	The capture attribute is available on html input elements
	hasInputCapture
	User’s device has touch capability
	hasTouchEvents
	The device orientation property exists (returns orientation of the device; mobile devices)
	hasWindowOrientationProperty
	The browser developer tools is open (anti-analysis check)
	hasDevToolsOpen
	Device is lying about the available resolution
	hasLiedResolution
	Device is lying about its Operating System
	hasLiedOs
	Device is lying about the browser it is using
	hasLiedBrowser
	Device is lying about the language it is using
	hasLiedLanguage
	VALUE
	NAME
	https
	Protocol
	Malicious domain
	Hostname
	/watch.[random number].js
	Path name
	See below
	Arguments
	URL PARAMETERS
	Value of key key in atOptions
	key
	Title of webpage as an array
	kw
	Referrer URL
	refer
	Value of params key in atOptions
	custom
	Timezone offset
	tz
	'e if the device is being emulated, f otherwise. In other words, result from window.LieDetector.runTests().isEmulate()
	dev
	Result from check handler: window.LieDetector.getResults()
	res
	Universally unique identifier [cookie value]
	uuid

