

 Page 0 of 11 July 2021

VIDLOX-3PC

Video Ad Fraud
Executed via
Malicious Creatives

 Page 1 of 11 July 2021

It’s an old malvertising trick to slip excess, unwanted code alongside a creative in an ad slot. While
those bad actors are typically trying to drop various types of malware, The Media Trust detected a
campaign that drove a video ad fraud scam nearly 5,000 times across more than 10 third-party AdTech
providers since April 2021 that affected dozens of popular mobile apps.

Malvertising and ad fraud often seem like two sides of the same coin, and this recent campaign shows
how the tactics of the former can fuel the latter. Dubbed VidLox-3pc (VidLox), this malware-driven ad
fraud campaign uses a fake creative—typically repeating the logo of well-known social, gaming, or
streaming apps—and injects multiple tracking URLs to generate at least 25 non-viewable impressions
for in-app video ad campaigns. The fake impression reporting is delivered to at least 10 demand and
supply side platforms (DSP, SSP). The campaign relies on extensive obfuscation to successfully
bypass creative blockers in multiple app environments to divert ad spend from legitimate AdTech and
publishers.

In-app video is a hot market, with eMarketer estimating more than $18 billion in US ad spend alone in
2021. That kind of cash attracts bad actors—according to DoubleVerify, in-app video fraud has jumped
50% in the last year and accounts for about 2% of all in-app video impressions globally.

How VidLox enables video ad fraud
Legitimate ad-supported mobile apps are the campaign target. When users in the US, Canada,
Germany and Spain access an app serving this campaign they will see an innocuous creative featuring
well-known app logos like Hulu, SnapChat, and SoundCloud. [Figure 1]

Figure 1: VidLox attack flow

https://www.emarketer.com/content/us-in-app-video-ad-spending-will-rebound-2021-bolstered-by-social-media-advertising
https://doubleverify.com/2021-global-insights-report/

 Page 2 of 11 July 2021

Behind the scenes, the VAST (primarily) and HTML5 tags contain an ad serving URL that delivers inline
JavaScript with more than 28,000 lines of code and advanced levels of obfuscation. Within this code
are two anomalous URLs enabling the impression fraud:

• one contains the string “.b-cdn.net”, which hosts the compromised creative

• another contains “/player/player.js,” which delivers the impression-fraud URLs.

There are more than 30 different domains used in the delivery of these non-viewable impressions (aka,
indicators of compromise, IOC), making it difficult to keep creative blocking tools updated. Fake
impressions are being recorded for more than 20 apps including Trivia Crack, CBS Sports, and Pin
Rescue.

Digging into VidLox
These two scripts are inserted into the webpage via a single call to the JavaScript function
document.write.

Figure 2: Snippet of the inline JavaScript, formatted.

 Page 3 of 11 July 2021

Figure 3: The fraudulent impression URL counts

The player.js file sends seven arguments to the main function: window.CEDATO_TAG, expiryUTCSec,
playerID, playerURL, opUrl, playerParams, and gpvUrl, the last of which is suspiciously long [Figure 4].

Figure 4: 7 function arguments within player.js, including the suspiciously long gpvURL.

The gpvUrl string is base64 encoded, and decoding reveals JSON data with tracking pixel URLs for
dozens of popular mobile apps. The JSON data also contains the image URL and other app data that
will be served with the campaign.

 Page 4 of 11 July 2021

Figure 5: The campaign’s app data and image URL

In Figure 5, the key “cookieJson” values are the app data (Planes Live - Flight Tracker) and image URL
(com.apalonapps.planesfree). However, the “loader_image_url” value does not match; the image is
about Crossy Road, not planesfree.

To understand how the tracking pixels are delivered we have to analyze the player.js file.

 Page 5 of 11 July 2021

Figure 6: Results from gpvUrl is stored into variable gpvRegex.

Following the references to variable gpvUrl, we can see on line 24 that the data is parsed into sections,
separating the base64 encoded string from ”data;base64”. The result is then stored into variable
gpvRegex. On line 27 the JSON data resulting from the decoded base64 is parsed and stored into
variable gpvData.

 Page 6 of 11 July 2021

Figure 7: Data from gpvUrl is passed to the
players key in CEDATO_TAG object and
variable playerUrl is injected.

The JSON data is then stored within the JavaScript object player on line 31, which is passed to the
players key in the CEDATO_TAG object on line 38 (a reference to Cedato’s HTML5 video player),
which is used to deliver video ads in cross-platform environments. The function injectScript on line 46
simply creates a new HTML script tag and puts the function argument as the source. In the example
above, variable playerUrl is injected into the page via a call to this function.

Figure 8: The final
function to request the
fraudulent impression
URLs.

 Page 7 of 11 July 2021

Figure 8 shows the final block of code that initiates the delivery of the fraudulent impression URLs.
(Recall from Figure 7 that CEDATO_TAG.players contains the data defined in the base64 encoded
string). The code on line 50 will then transfer execution to player_117.08_m.js (playerUrl) which will
then parse CEDATO_TAG.players and request the impression URLs.

Figure 9: Argument e of
function bo is
CEDATO_TAG.

After some initialization, execution eventually falls on function bo (Figure 9), whose argument, e, is
CEDATO_TAG defined on line 41 in Figure 7. We can confirm this by checking the value of variable
e.tag in the browser’s debugger.

Figure10: The browser’s
debugger contains the
properties autoStart, players,
and version.

 Page 8 of 11 July 2021

Just like CEDTAO_TAG in Figure 7, e.tag contains the properties autoStart, players, and version (See
Figure 10). The players property contains the gpvData which itself contains the fraudulent impression
URLs, the campaign’s app data, and the image URL. As seen in Figure 9, function bo will then pass
each property of players to function go in a loop.

Figure 11: One of the first
URLs to be sent by the script
is a callback URL with a top
level domain of .xyz.

One of the first URLs to be sent by the script is a callback URL with a top level domain of “.xyz”. This
callback URL is sent as a pixel via a call to e.sendPixel on line 12,117 in Figure 11. A function call stack
can be seen below in Figure 12, which shows the path the URL takes before being sent by e.sendPixel.

 Page 9 of 11 July 2021

Figure 13: Fraudulent impression URLs are sent to t.fetchAdUrl.

Figure 12: Function call stack demonstrates the
journey the .xyz URL takes before heading to
e.sendPixel.

 Page 10 of 11 July 2021

Next, through a series of other function calls, the fraudulent impression URLs are sent with a call to
t.fetchAdUrl on line 8520 in Figure 13 above. The URL highlighted in orange represents the impression
URL being sent by the function. In this case, the URL references the mobile app Pin Rescue.

As the script continues, each impression URL is sent via the same call to t.fetchAdUrl. Each URL
contains the same tracking domain as the previous but the mobile app is different.

Figure: 14: All of the fraudulent URLs delivered in the campaign.

Figure 14 shows the fraudulent URLs delivered in the campaign exemplified above, but VidLox has
been observed injecting even larger amount of URLs. The creative or video that is shown is a repeating
logo of a social, gaming or streaming application, such as Snapchat, Crossy Road, Hulu, and Blob
Runner. These images are hosted by b-cdn[.]net.

Figure 15: Creatives delivered
by the campaign are simply
repeated logos of well-known
apps.

 Page 11 of 11 July 2021

Say No to Fraud
Adware is frequently a precursor to malicious activity, often leading to issues across the broader cyber
security spectrum like phishing and placing backdoors on devices that lead to ransomware and
keystroke loggers among others. In this example, VidLox exemplifies how malvertising tactics fuel ad
fraud.

Key tactics to thwart this type of ad fraud:

• Real-time client-side monitoring to capture evolving threats

• Blocking of known malicious domains and associated creative

• Share details with upstream partners to terminate the bad buyer, not the partner

AdTech companies and publishers should avoid playing a part in this impression-fraud scheme by
blocking the campaign. As the speed of domain cycling makes in-app blocking difficult, The Media Trust
recommends discussing with your upstream partner to ensure policies are followed. Otherwise, spend
is being diverted from legit AdTech companies and publishers. The consequences of letting VidLox
through the pipes is higher than it seems.

